GOST N BLOCKCHAIN

COMPRESSED SIGNATURE AND PUBLIC KEY RECOVERY WITH GOST R 34.10-2012

by Dmitriy Bozhko and Alexey Troshichev
WHO WE ARE

ALEXEY TROSHICHEV
El Capitan
amt@ledgers.world

DMITRY BOZHKO
Crypto Core Developer
dmitry@ledgers.world

DISTRIBUTED LEDGERS
Blockchain Dev and Security
www.ledgers.world
Digital signature is to answer the following questions:

- Is the person who signed a message the same person who announces that he signed the message?
- Signed and announced messages are the same?
DIGITAL SIGNATURE: CLASSIC APPROACH

- MSG
- SIG
- PubK

DSA

- False
- True
DIGITAL SIGNATURE: NEW APPROACH

- MSG
- SIG

CECDSA
compressed

PubK
Less data to send and store: MSG + SIG + PubK > MSG + SIG

Suitable for short messages

Standard for cryptocurrency world: Bitcoin, Ethereum, Litecoin...
Legal power of digital signature

Reuse of cryptocurrency algorithms without modification
Elliptic Curve Digital Signature Algorithm (ECDSA)

GOST R 34.10-2012 (RFC7091)
Find public key \(Q \) using signature \(S = (r, s) \) as follows:

1. For \(j \) from 0 to \(h \) do the following:
 1. Let \(x = r + jn \)
 2. Convert the integer \(x \) to an octet string \(X \).
 3. Convert the octet string \(\text{02}16||X \) to an elliptic curve point \(R \). If this conversion routine outputs invalid then do another iteration of Step 1.
 4. If \(n_r \neq 0 \) then do another iteration of Step 1.
 5. Use the hash function to compute the hash value: \(H = \text{Hash}(M) \).
 If the hash function outputs invalid, output invalid and stop.
 6. Derive an integer \(e \) from \(H \).
 7. For \(k \) from 1 to 2 do the following:
 1. Compute a candidate public key as \(Q = r^{-1}(sR - eG) \)
 2. Verify that \(Q \) is the authentic public key.
 If \(Q \) is authenticated, output \(Q \) and stop.
 3. Change \(R \) to \(-R\).

2. Output invalid
<table>
<thead>
<tr>
<th></th>
<th>Sign</th>
<th>Verify</th>
<th>Recover</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECDSA</td>
<td>$s = k^{-1}(e - rd_U)$</td>
<td>$C = s^{-1}eG + s^{-1}rQ$</td>
<td>$Q = r^{-1}(sR - eG)$</td>
</tr>
<tr>
<td>GOST R 34.10-2012</td>
<td>$s = k^{-1}(rd_U + ke)$</td>
<td>$C = e^{-1}sG + e^{-1}rQ$</td>
<td>$Q = r^{-1}(sG - eR)$</td>
</tr>
</tbody>
</table>
PUBLIC KEY RECOVERY (GOST R 34.10-12)

Bob signs a message with a public key.

Signature $\zeta' = (r \| s \| py)$

32 bytes 32 bytes 1 byte

- r
- s
- py

Calculate r, s, py from ζ'

- $0 < r < q$
- $0 < s < q$
- $py \equiv 0 \mod 1$

Invalid ζ'

$\alpha = \text{Hash}(M)$

$e = \alpha \mod q$

Calculate R

Calculate r^{-1}

$rr^{-1} = 1 \mod q$

$Q = r^{-1}(sP - eR)$

Pubkey Q
COMPRESSED SIGNATURE CALCULATING (GOST R 34.10-12)

- d_U – Private key
- M – Message
- ζ – Regular signature
- p_y – Parity byte
- c_{rr} – Error
- ζ' – Compressed signature

Diagram:

1. d_U, M → $\zeta = \text{Sign}(d_U, M)$
2. $(p_y, c_{rr}) = \text{Recover}(\zeta)$
3. If c_{rr}
 - Yes: $\zeta' = \zeta \| p_y$
 - No: (feedback path)

Compressed signature ζ'
QUESTIONS?

ALEXEY TROSHICHEV
El Capitan
amt@ledgers.world

DMITRY BOZHKO
Crypto Core Developer
dmitry@ledgers.world

DISTRIBUTED LEDGERS
Blockchain Dev and Security
www.ledgers.world
#distributedledgers
@
#zeronights